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Problem 1

To investigate the determinants of female labor force participation, you are

provided with an independent sample of N = 2, 477 married women from the

US National Longitudinal Survey of Youth (NLSY).

The dependent variable y ≡ WEEKS measures the number of weeks worked by

these women in 1990. Approximately 45% of the sample reports working full-

time (y = 52) and 17% reports being out of the labor force (y = 0). Part-time

workers report a number of hours that can be considered to be continuous.

The following explanatory variables are available:

� AFQT: A measure of cognitive ability (Armed Forces Qualifying Test,

standardized test score with zero mean and unit variance).

� EDUC: Number of years of schooling completed.

� HUSBINC: Husband’s income in the previous year (in thousand USD).

� KIDS: Binary indicator for having children (= 1 if at least one child, 0

otherwise).

These covariates are stored in a N × 5 matrix X, where the first column is a

vector of 1s for the intercept term of the model. The column vector xi is used

to denote the ith row of X.
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Figure 1.1: Histogram of the dependent variable WEEKS.
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Question 1.1: Describe the features of the dependent variable WEEKS, and

explain how the Tobit model can be extended to accommodate them.

You should state your model analytically as precisely as possible.

[Note: If you do not manage to answer this question, use the Tobit model

instead for this question and the remaining ones.]

Suggested answer

The dependent variable y displayed in Fig. 1.1 shows a bunching at 52

weeks (woman working full-time), and another one at 0 (women not work-

ing). The Tobit model studied in the course is an appropriate candidate

for this type data, but it has to be extended to account for this double

corner solution of the dependent variable.

The double corner solution happens because it is not possible to work a

negative number of hours (left-censoring), and a year only has 52 weeks

that can be worked (right-censoring).

A double-censored model (two-sided Tobit) can be constructed based on

the following observational rule:

yi =


0 if y?i ≤ 0,

y?i if 0 < y?i < 52,

52 if y?i ≥ 52,

where the latent variable is expressed as

y?i = x′iβ + εi, εi
iid∼ N

(
0, σ2

)
. (1)

The error terms εi are assumed to be independent and identically dis-

tributed (iid) across women, as we are working with an independent sam-

ple of individuals.

This model can be used to explain the following statistics, among other

quantities of interest:

� Probability of not working: Pr(yi = 0 | xi).

� Probability of working part-time: Pr(0 < yi < 52 | xi).

� Probability of working full-time: Pr(yi = 52 | xi).
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� Expected number of hours worked for those working part-time:

E[yi | 0 < yi < 52, xi].

Question 1.2: Derive the likelihood function LN(θ; y,X) of the model spec-

ified in Question 1.1, where θ is the vector of model parameters.

Suggested answer

Let θ = (β′, σ)′. To derive the likelihood function, the three cases have to

be considered:

(a) Probability of being out of the labor force:

Pr(yi = 0 | xi, θ) = Pr(x′iβ + εi ≤ 0 | xi, θ) ,

= Pr

(
εi
σ
≤ −x

′
iβ

σ
| xi, θ

)
,

= Φ

(
−x

′
iβ

σ

)
= 1− Φ

(
x′iβ

σ

)
, (2)

where Φ(·) denotes the cumulative distribution function (CDF) of the

standard normal distribution, i.e., Φ(x) =
∫ x

−∞(2π)−1/2 exp{−t2/2}dt,
and the last equality is obtained from the symmetry of the normal

distribution.

(b) Probability of working full-time:

Pr(yi = 52 | xi, θ) = Pr(x′iβ + εi ≥ 52 | xi, θ) ,

= 1− Pr(x′iβ + εi < 52 | xi, θ) ,

= 1− Pr

(
εi
σ
<

52− x′iβ
σ

| xi, θ
)
,

= 1− Φ

(
52− x′iβ

σ

)
= Φ

(
x′iβ − 52

σ

)
.

(c) Density function of yi for women working part-time (the latent vari-

able is observed in that case):

f(yi | xi, θ) =
1

σ
φ

(
yi − x′iβ

σ

)
,

where φ(x) = (2π)−1/2 exp{−x2/2} is the probability density function
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(PDF) of the standard normal distribution.

The probability of working part-time would therefore be

Pr(0 < yi < 52 | xi, θ) = 1− Pr(yi = 0 | xi, θ)− Pr(yi = 52 | xi, θ).

Putting the three pieces together provides the full likelihood function:

LN(θ; y,X) =
N∏
i=1

[
1− Φ

(
x′iβ

σ

)]1{yi=0} [
Φ

(
x′iβ − 52

σ

)]1{yi=52}

×
[

1

σ
φ

(
yi − x′iβ

σ

)]1{0<yi<52}

,

where the indicator function 1{·} is equal to 1 if the corresponding condi-

tion is fulfilled, to 0 otherwise, and allows to distinguish between the three

different cases depending on the observed outcome yi.

Question 1.3: Discuss the identification of the model, and especially, whether

any parameter restrictions are required for identification.

Suggested answer

As in the standard Tobit model seen in the course, this model is identified,

provided that some women are observed in the three different cases (not

working/working part-time/working full-time), and that there is no multi-

collinearity problem with the explanatory variables. Then, no parameter

restrictions are required.

Multicollinearity of the explanatory variables arises if at least one of them

is a linear combination of some (or all) of the other ones. This results in a

matrixX that is not full rank, and therefore creates identification problems

(e.g., X ′X cannot be inverted in that case). To see this, simplify the

model to have only two covariates x1i and x2i, and assume that x2i = cx1i,

for a fixed constant c. Then in the likelihood function, x′iβ enters as

x1iβ1 + x2iβ2 = x1i(β1 + cβ2) ≡ x1iδ. Therefore, only δ ≡ β1 + cβ2 can be

identified (and subsequently estimated to provide δ̂ ≡ ̂β1 + cβ2), but there

is an infinite number of values for β1 and β2 that would provide the same

likelihood.

The variance of the error term may be a source of identification problems in

some latent variables (e.g., probit). This happens when the latent variable
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can be rescaled without affecting the likelihood. In this model, however,

the outcome is observed for the women working part-time (0 < yi < 52),

which provides identification of σ.

This can be seen formally by observing that the term −N1 log σ enters the

log-likelihood function (where N1 is the numer of women working part-

time), so that any change in σ results in a change in LN(θ; y,X). Thus, σ

is uniquely identified. As a consequence, β can also be identified.

In the special case where there are no observations in the interval ]1, 52[

(i.e., no women working part-time), σ is not identified. In this case, we

are back to the framework of the probit model, where we can only explain

the probabilities of not working or working full-time. This problem can

also arise empirically if too few women working part-time are observed

(empirical identification), creating estimation issues for the parameter σ

(e.g., convergence problems).

Question 1.4: Derive analytically the marginal effect of a given (continuous)

explanatory variable xj on the probability of working (either part-time

or full-time). You are not asked to compute this marginal effect.

Suggested answer

This marginal effect can be obtained using the probability derived in

Eq. (2):

∂

∂xj
Pr(y?i > 0 | xi, θ) =

∂

∂xj
(1− Pr(y?i ≤ 0 | xi, θ)) ,

=
∂

∂xj
Φ

(
x′iβ

σ

)
,

=
βj
σ
φ

(
x′iβ

σ

)
,

using the fact that ∂Φ(t)/∂t = φ(t).

Question 1.5: Discuss the maximum likelihood estimation results presented

in Table 1.1, which shows the parameter estimates (Est.) and their stan-

dard errors (SE).
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Suggested answer

These parameter estimates should be interpreted carefully, as they measure

the impact of the explanatory variables on the latent variable, not on the

observed outcome.

To get more insights, it would be necessary to derive and compute marginal

effects, such as ∂E[y | 0 < y < 52, x, θ] /∂xj for the impact of covariate xj

on the expected number of hours for women working part-time. This is

beyond the current question asked.

It is possible, however, to interpret the significance and the signs of these

coefficients. This can be done, for example, by using a Student t-test for

each regression coefficient βk, using the estimates reported in Table 1.1.

Remember that the t-statistic is computed as follows and can be approxi-

mated by a standard normal distribution asymptotically:

β̂k

ŜE(β̂k)
→ N (0, 1) .

A quick calculation shows that all t-statistics are above the 5%-critical

value (in absolute value) of the standard normal distribution, which is

equal to 1.96 for a two-sided test. Therefore, all covariates have an impact

significantly different from zero on the outcome.

All covariates have the signs we would expect: More educated women and

with higher cognitive abilities tend to work more, while having children

and husband’s income reduce their number of hours and their probability

or working. These results are consistent with a model of substitutability

between the spouses’ amount of work, and household production (including

child care).
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Table 1.1: Maximum likelihood estimation results.

Est. SE

CONST 49.97 7.85
AFQT 0.14 0.05
HUSBINC -0.24 0.05
KIDS -31.19 2.67
EDUC 1.56 0.62
σ 44.51 1.23
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Problem 2

Consider an iid sample y = (y1, . . . , yN)′ drawn from an exponential distribu-

tion with scale parameter θ > 0 such that, for each i = 1, . . . , N :

yi
iid∼ Expon(θ), f(yi | θ) =

1

θ
exp

{
−yi
θ

}
, E[yi] = θ.

Question 2.1: Propose a natural conjugate prior distribution for θ. Derive

the corresponding posterior distribution.

You may use one of the distributions of Table 2.1. Justify your choice.

Suggested answer

Remember that a prior is said to be conjugate if it leads to a posterior

distribution that belongs to the same family of distribution.

The likelihood function is

LN(θ) =
N∏
i=1

θ−1 exp
{
−yi
θ

}
= θ−N exp

{
−
∑N

i=1 yi
θ

}
. (3)

It appears to match with the kernel of the inverse-gamma distribution

provided in Table 2.1, which is p(θ) ∝ θ−a−1 exp{−b/θ}. Therefore, the

inverse-gamma distribution is a natural conjugate prior for θ.

Conjugacy can be confirmed by applying Bayes’ theorem to obtain the

posterior. Using θ ∼ IG(a0, b0) a priori and working directly with the

kernels of the likelihood and of the prior provides:

p(θ | y) ∝ p(y | θ)p(θ),

∝ θ−N exp

{
−
∑N

i=1 yi
θ

}
× θ−a0−1 exp

{
−b0
θ

}
,

∝ θ−a0−N−1 exp

{
−b0 +

∑N
i=1 yi

θ

}
,

which corresponds to the kernel of an inverse-gamma distribution (thus
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confirming the conjugacy of the inverse-gamma distribution):

θ | y ∼ IG

(
a0 +N, b0 +

N∑
i=1

yi

)
.

Question 2.2: Show that Jeffreys’ prior for this model is p(θ) ∝ θ−1. Derive

the corresponding posterior distribution of θ.

Hint: Remember that Jeffreys’ prior is proportional to the square root of

the determinant of the information matrix, i.e., p(θ) ∝ |I(θ)|1/2, which

simplifies to p(θ) ∝ I(θ)1/2 in the present scalar case.

Suggested answer

To derive Jeffreys’ prior, let us first obtain the information matrix (which

is just a scalar in this particular case).

Log-likelihood function of this model, obtained from Eq. (3):

lnLN(θ) = −N ln θ −
∑N

i=1 yi
θ

.

First derivative of the log-likelihood function:

∂ lnLN(θ)

∂θ
= −N

θ
+

∑N
i=1 yi
θ2

.

Second derivative of the log-likelihood function:

∂2 lnLN(θ)

∂θ2
=

∂

∂θ

(
∂ lnLN(θ)

∂θ

)
=
N

θ2
− 2

∑N
i=1 yi
θ3

.

Information:

I(θ) = E

[
−∂

2 lnLN(θ)

∂θ2

]
= E

[
−N
θ2

+
2
∑N

i=1 yi
θ3

]
,

= −N
θ2

+
2
∑N

i=1 E[yi]

θ3
= −N

θ2
+

2Nθ

θ3
=
N

θ2
,

because the expectation is taken with respect to the distribution of the

random variable yi, and E[yi] = θ for the exponential distribution.

Hence, Jeffreys’ prior is p(θ) ∝ |Nθ−2|1/2 ∝ θ−1.
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Corresponding posterior distribution:

p(θ | y) ∝ LN(θ)p(θ) ∝ θ−N−1 exp

{
−
∑N

i=1 yi
θ

}
,

which is the kernel of the following inverse-gamma distribution:

θ | y ∼ IG

(
N,

N∑
i=1

yi

)
.

Note that this posterior distribution appears to be the limit distribution

of the one derived in Question 2.1 when a0 → 0 and b0 → 0.

Table 2.1: Some probability distributions.

Distribution Density f(θ | a, b) Mean

Uniform
1

b− a
a+ b

2

Beta
θa−1(1− θ)b−1

B(a, b)

a

a+ b

Gamma
1

Γ(a)ba
θa−1 exp

{
−θ
b

}
ab

Inverse-Gamma
ba

Γ(a)
θ−a−1 exp

{
− b
θ

}
b

a− 1
(for a > 1)
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Problem 3

Consider the following MATLAB code:

1 % Inputs:

2 % y vector Nx1

3 % x vector Nx1

4 % x0 scalar 1x1

5 % h scalar 1x1

6 function [yhat] = regress(y,x,x0,h)

7 kern = @(z) normpdf(z);

8 w = kern((x-x0)./h);

9 w = w./sum(w);

10 yhat = sum(w.*y);

11 end

Question 3.1: Express in mathematical terms what this MATLAB function

computes. You should only provide one or two equations to answer

this question. Be explicit about the notation.

Suggested answer

Given the comments of this code (lines 1–5), this function takes as argu-

ments two vectors y = (y1, . . . , yN)′ and x = (x1, . . . , xN)′, two scalars x0

and h, and returns a scalar ŷ computed as

lines 7–9: line 10:

wi =

φ

(
xi − x0
h

)
N∑
j=1

φ

(
xi − x0
h

) , ŷ =
N∑
i=1

wiyi,

where φ(·) is the probability density function (PDF) of the standard nor-

mal distribution, implemented in MATLAB by the function normpdf().

Question 3.2: Using only words (no equations required), explain briefly the

methodology implemented by this function. In particular, describe the
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role of the two scalars “x0” and “h”, and explain the values they can

take.

Suggested answer

This function implements kernel regression—more precisely, the Nadaraya-

Watson estimator—using the Gaussian (normal) kernel. It provides, for

a given value x0 of the explanatory variable, a nonparametric estimate ŷ

of the dependent variable, computed as the weighted average of all the

observed values of y. The weights are computed as a function of the

explanatory variable x and depend on how close to x0 these values are.

The PDF of the standard normal distribution is used as kernel to measure

this distance.

The parameter h is called bandwidth and allows to adjust the weight

each observation gets, depending on how far it is from the point x0. The

smaller the bandwidth, the less weight the observations get when they are

far from x0. Conversely, the larger, the more weight. As a consequence,

h determines how smooth the estimator is, and is often referred to as

smoothing parameter. Appropriate methods have been developed to find

the optimal bandwidth. The bandwidth h should be strictly positive, while

x0 can take any real value on the support of the explanatory variable x.

Usually, this function will be called several times for different values of x0,

to then plot the corresponding nonparametric regression line.
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